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PIXEL DRIVER CIRCUIT AND PIXEL
CIRCUIT HAVING CONTROL CIRCUIT
COUPLED TO SUPPLY VOLTAGE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of and claims priority to
U.S. patent application Ser. No. 13/089,622, filed Apr. 19,
2011, which is a continuation of U.S. patent application Ser.
No. 12/504,510, filed Jul. 16, 2009, which is a continuation of
U.S. patent application Ser. No. 11/220,094, filed Sep. 6,
2005, now U.S. Pat. No. 7,569,849, issued Aug. 4, 2009,
which s a continuation-in-part of U.S. patent application Ser.
No. 10/468,319, filed Jan. 23, 2004, which is the U.S.
National Phase of PCT/CA02/00173, filed Feb. 18, 2002,
which claims the benefit of U.S. Provisional Application
60/268,900, filed Feb. 16,2001, all of which are incorporated
herein by reference in their entireties.

FIELD OF INVENTION

The present invention relates to a display technology, and
more particularly to a pixel driver circuit for driving a light-
emitting element and a pixel circuit having the pixel driver
circuit.

BACKGROUND OF THE INVENTION

Organic light emitting diode (OLED) displays have gained
significant interest recently in display applications in view of
their faster response times, larger viewing angles, higher con-
trast, lighter weight, lower power, amenability to flexible
substrates, as compared to liquid crystal displays (LCDs).
Despite the OLED’s demonstrated superiority over the LCD,
there still remain several challenging issues related to encap-
sulation and lifetime, yield, color efficiency, and drive elec-
tronics, all of which are receiving considerable attention.

Although passive matrix addressed OLED displays are
already in the marketplace, they do not support the resolution
needed in the next generation displays, since high informa-
tion content (HIC) formats are only possible with the active
matrix addressing scheme.

Active matrix addressing involves a layer of backplane
electronics, based on thin film transistors (TFTs) fabricated
using amorphous silicon (a-Si:H), polycrystalline silicon
(poly-Si), or polymer technologies, to provide the bias volt-
age and drive current needed in each OLED based pixel. Here,
the voltage on each pixel is lower and the current throughout
the entire frame period is a low constant value, thus avoiding
the excessive peak driving and leakage currents associated
with passive matrix addressing. This in turn increases the
lifetime of the OLED.

In active matrix OLED (AMOLED) displays, it is impor-
tant to ensure that the aperture ratio or fill factor (defined as
the ratio of light emitting display area to the total pixel area)
should be high enough to ensure display quality.

Conventional AMOLED displays are based on light emis-
sion through an aperture on the glass substrate where the
backplane electronics is integrated. Increasing the on-pixel
density of TFT integration for stable drive current reduces the
size of the aperture. The same happens when pixel sizes are
scaled down. One solution to having an aperture ratio that is
invariant on scaling or on-pixel integration density is to ver-
tically stack the OLED layer on the backplane electronics,
along with a transparent top electrode as shown in FIG. 2. In
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FIG. 2, reference numerals S and D denote a source and a
drain, respectively. This implies a continuous back electrode
over the OLED pixel.

However, this continuous back electrode can give rise to
parasitic capacitance, whose effects become significant when
the electrode runs over the switching and other TFTs. The
presence of the back electrode can induce a parasitic channel
in TFTs giving rise to high leakage current. The leakage
current is the current that flows between source and drain of
the TFT when the gate of the TFT is in its OFF state.

SUMMARY OF THE INVENTION

It is an object of the invention to provide a system that
obviates or mitigates at least one of the disadvantages of
existing systems.

The present invention relates to a pixel driver circuit for
driving a light-emitting element (e.g. OLED), and a pixel
circuit having the pixel driver circuit.

In accordance with an aspect of the present invention, there
is provided a pixel driver circuit, which includes: an address
line; a data line; a switch thin film transistor, a first node of the
switch transistor being connected to the data line and agate of
the switch transistor being connected to the address line; a
feedback thin film transistor, a first node of the feedback
transistor being connected to the data line and a gate of the
feedback transistor being connected to the address line; a
reference thin film transistor, a drain of the reference transis-
tor being connected to a second node of the feedback transis-
tor, a gate of the reference transistor being connected to a
second node of the switch transistor and a source of the
reference transistor being connected to a ground potential;
and a drive thin film transistor, a gate of the drive transistor
being connected to the gate of the reference transistor.

In accordance with a further aspect of the present inven-
tion, there is provided a pixel circuit, which includes: the
pixel driver circuit described above; and an organic light
emitting diode, the source of the drive transistor being con-
nected to the ground potential and the drain being connected
to the organic light emitting diode.

In accordance with a further aspect of the present inven-
tion, there is provided a pixel driver circuit, which includes:
an address line; a data line; a switch thin film transistor, a first
node of the switch transistor being connected to the data line
and a gate of the switch transistor being connected to the
address line; a feedback thin film transistor, a gate of the
feedback transistor being connected to the address line and a
second node of the feedback transistor being connected to a
ground potential; a reference thin film transistor, a drain of the
reference transistor being connected to a second node of the
switch transistor, a gate of the reference transistor being con-
nected to the second node of the switch transistor and a source
of the reference transistor being connected to a first node of
the feedback transistor; and a drive thin film transistor, a gate
of the drive transistor being connected to the gate of the
reference transistor.

In accordance with a further aspect of the present inven-
tion, there is provided a pixel circuit, which includes: the
pixel driver circuit described above; and an organic light
emitting diode, the source of the drive transistor being con-
nected to the ground potential and the drain being connected
to the organic light emitting diode.

In accordance with a further aspect of the present inven-
tion, there is provided a pixel circuit, which includes: the
pixel driver circuit described above; and an organic light
emitting diode, the source of the drive transistor being con-
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nected to the organic light emitting diode and the drain being
connected to a voltage supply.

In accordance with a further aspect of the present inven-
tion, there is provided a pixel driver circuit, which includes:
an address line; a data line; a switch thin film transistor, a first
node of the switch transistor being connected to the data line
and a gate of the switch transistor being connected to the
address line; a feedback thin film transistor, a first node of the
feedback transistor being connected to the data line and a gate
of the feedback transistor being connected to the address line;
a reference thin film transistor, a drain of the reference tran-
sistor being connected to a second node of the feedback
transistor, the gate of the reference transistor being connected
to a second node of the switch transistor and a source of the
reference transistor being connected to a ground potential; a
diode-use thin film transistor, a drain and a gate of the diode-
use transistor being connected to a potential, and a source of
the diode-use transistor being connected to the second node
of the feedback transistor; and a drive thin film transistor, a
gate of the drive transistor being connected to the gate of the
reference transistor.

In accordance with a further aspect of the present inven-
tion, there is provided a pixel circuit, which includes: the
pixel driver circuit described above; and an organic light
emitting diode, the source of the drive transistor being con-
nected to the ground potential and the drain being connected
to the organic light emitting diode.

In accordance with a further aspect of the present inven-
tion, there is provided a pixel circuit, which includes: the
pixel driver circuit described above; and an organic light
emitting diode, the source of the drive transistor being con-
nected to the organic light emitting diode, and the drain being
connected to a voltage supply.

In accordance with a further aspect of the present inven-
tion, there is provided a pixel driver circuit for driving a
colour pixel of acolour display, which includes: a first address
line; a data line; a first switch thin film transistor, a first node
of the first switch transistor being connected to the data line
and a gate of the switch transistor being connected to the first
address line; a feedback thin film transistor, a first node and a
gate of the feedback transistor being connected to a second
node of the first switch transistor and a second node of the
feedback transistor being connected to a ground potential; a
second switch thin film transistor, a source of the second
switch transistor being connected to a second node of the first
switch transistor, a gate of the second switch transistor being
connected to a second address line; a first drive thin film
transistor, a gate of the first drive transistor being connected to
adrain of the second switch transistor; a third switch thin film
transistor, a source of the third switch transistor being con-
nected to the second node of the first switch transistor, a gate
of the third switch transistor being connected to a third
address line; a second drive thin film transistor, a gate, of the
second drive transistor being connected to the drain of the
third switch transistor; a fourth switch thin film transistor, a
source of the fourth switch transistor being connected to the
second node of the first switch transistor, a gate of the fourth
switch transistor being connected to a fourth address line; and
a third drive thin film transistor, a gate of the third drive
transistor being connected to the drain of the fourth switch
transistor.

In accordance with a further aspect of the present inven-
tion, there is provided a pixel circuit, which includes: the
pixel driver circuit described above; a first organic light emit-
ting diode, a source of the first drive transistor being con-
nected to the ground potential and a drain of the first drive
transistor being connected to the first organic light emitting

20

25

40

45

60

65

4

diode; a second organic light emitting diode, a source of the
second drive transistor being connected to the ground poten-
tial and a drain of the second drive transistor being connected
to the second organic light emitting diode; and a third organic
light emitting diode, a source of the third drive transistor
being connected to the ground potential and a drain of the
third drive transistor being connected to the third organic light
emitting diode.

In accordance with a further aspect of the present inven-
tion, there is provided a pixel circuit which includes: a pixel
driver circuit described above, a first organic light emitting
diode associated with the first drive transistor; a second
organic light emitting diode associated with the second drive
transistor; and a third organic light emitting diode associated
with the third drive transistor, the source of the first drive
transistor being connected to the first organic light emitting
diode, and a drain of'the first drive transistor being connected
to a voltage supply.

This summary of the invention does not necessarily
describe all features of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of the invention will become more
apparent from the following description in which reference is
made to the appended drawings wherein:

FIG. 1 shows variation of required pixel areas with mobil-
ity for 2-T and 3-T pixel drivers;

FIG. 2 shows a conventional pixel architecture for surface
emissive a-Si:H AMOLED displays;

FIG. 3 shows a cross section view of a dual-gate TFT
structure;

FIG. 4 shows forward and reverse transfer characteristics
of dual-gate TFT for various top gate biases;

FIG. 5 shows a panel architecture of a AMOLED display;

FIG. 6 A shows a pixel circuit including a conventional 2-T
pixel driver circuit;

FIG. 6B shows input-output timing diagrams for the 2-T
pixel circuit of FIG. 6A;

FIG. 7A shows a pixel circuit including a 5-T pixel current
driver circuit for an OLED display in accordance with an
embodiment of the present invention;

FIG. 7B shows input-output timing diagrams of the 5-T
pixel circuit of FIG. 7A;

FIG. 8 shows transient performance of the 5-T pixel current
driver circuit of FIG. 7A for three consecutive write cycles;

FIG. 9 shows input-output transfer characteristics for the
2-T pixel driver circuit of FIG. 6A for different supply volt-
ages;

FIG. 10 shows input-output transfer characteristics for the
5-T pixel current driver circuit of F1G. 7A for different supply
voltages;

FIG. 11 shows variation in OLED current as a function of
the normalized shift in threshold voltage;

FIG. 12 shows a pixel circuit including a conventional 2-T
polysilicon based pixel driver circuit having p-channel drive
TFTs;

FIG. 13 shows a pixel circuit including a 4-T pixel current
driver circuit for an OLED display in accordance with a
further embodiment of the present invention;

FIG. 14 shows a pixel circuit including a 4-T pixel current
driver circuit for an OLED display in accordance with a
further embodiment of the present invention;

FIG. 15 shows a pixel circuit including a 4-T pixel current
driver circuit for an OLED display in accordance with a
further embodiment of the present invention;
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FIG. 16 shows a pixel circuit including a 4-T pixel current
driver circuit for an OLED display in accordance with a
further embodiment of the present invention;

FIG. 17 shows a pixel circuit including a pixel current
driver circuit for a full color, OLED display in accordance
with a further embodiment of the present invention;

FIG. 18 shows a schematic diagram of the top gate and the
bottom gate of a dual gate transistor where the top gate is
electrically connected to the bottom gate;

FIG. 19 shows a pixel circuit including a 5-T pixel current
driver circuit in accordance with a further embodiment of the
present invention;

FIG. 20 shows a pixel circuit including a 4-T pixel current
driver circuit in accordance with a further embodiment of the
present invention;

FIG. 21 shows a pixel circuit including a 4-T pixel current
driver circuit in accordance with a further embodiment of the
present invention;

FIG. 22 shows a pixel circuit including a 4-T pixel current
driver circuit in accordance with a further embodiment of the
present invention;

FIG. 23 shows a pixel circuit including a 4-T pixel current
driver circuit in accordance with a further embodiment of the
present invention;

FIG. 24 shows a pixel circuit including a pixel current
driver circuit for a full color display in accordance with a
further embodiment of the present invention;

FIG. 25 shows a pixel circuit including a 5-T pixel current
driver circuit in accordance with a further embodiment of the
present invention;

FIG. 26 shows a pixel circuit including a 4-T pixel current
driver circuit in accordance with a further embodiment of the
present invention;

FIG. 27 shows a pixel circuit including a 4-T pixel current
driver circuit in accordance with a forther embodiment of the
present invention;

FIG. 28 shows a pixel circuit including a 4-T pixel current
driver circuit in accordance with a further embodiment of the
present invention;

FIG. 29 shows a pixel circuit including a 4-T pixel current
driver circuit in accordance with a forther embodiment of the
present invention; and

FIG. 30 shows a pixel circuit including a pixel current
driver circuit for a full color display in accordance with a
further embodiment of the present invention.

DETAILED DESCRIPTION

The following description is of a preferred embodiment.

The embodiments of the present invention are described
using an OLED display. However, the embodiments of the
present invention are applicable to any other displays, such as
phosphorus displays, inorganic electroluminescent (EL), and
LED displays. A pixel driver circuit in accordance with the
embodiments of the present invention includes a plurality of
TFTs, which form a current mirror based pixel current driver
for automatically compensating for the shift of threshold V,,,
of a drive TFT. The TFTs are formed in a current-pro-
grammed A V,-compensated manner.

The pixel driver circuit is suitable for an OLED display.
The OLED layer may be vertically stacked on the plurality of
TFTs. The pixel driver circuit may be provided for mono-
chrome displays or for full colour displays. The OLED may
be a regular (P-I-N) stack OLED or an inverted (N-I-P) stack
OLED, and may be located at either the drain or source of the
drive TFT(s)
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The TFT may be an n-type TFT or a p-type TFT. The TFT
may be, but not limited to, an amorphous silicon (a-Si:H)
based TFT, a polysilicon-based TFT, a crystalline silicon
based TFT, or an organic semiconductor based TFT.

Although amorphous Si does not enjoy equivalent elec-
tronic properties compared to poly-Si, it adequately meets
many of the drive requirements for small area displays such as
those used in pagers, cell phones, and other mobile devices.
Poly-Si TFTs have one key advantage in that they are able to
provide better pixel drive capability because of their higher
mobility. Their higher mobility can be of the order of 1 z~100
em?/Vs. “u” represents field effect mobility, which is typi-
cally used to evaluate how well a semiconductor can conduct.
“Vs”is aunitwhere V stands for volt, and s stands for second.
This makes poly-Si highly desirable for large area (e.g. laptop
size) Video Graphics Array (VGA) and Super VGA (SVGA)
displays. The lower mobility associated with a-Si:H TFTs
(Wr~1 em®/Vs) is not a limiting factor since the drive tran-
sistor in the pixel can be scaled up in area to provide the
needed drive current. The OLED drive current density is
typically 10 mA/cm? at 10V operation to provide a brightness
of 100 cd/m, which is the required luminance for most dis-
plays. For example, with an a-Si:H TFT mobility of 0.5 cm?/
Vs and channel length of 25 pm, this drive current require-
ment translates into required pixel area of 300 um?, which
adequately meets the requirements of pixel resolution and
speed for some 3-inch monochrome display applications.

FIG. 1 illustrates simulation results for the variation of the
required pixel size with device mobility calculated for two
types of drivers, which will be elaborated later, a conventional
voltage-programmed 2-T pixel driver circuit (FIG. 6A) and a
current-programmed, AV ~compensated 5-T pixel driver cir-
cuit in accordance with an embodiment of the present inven-
tion (FIG. 7A)

InFIG. 1, the graph having a mark “Wl” represents the pixel
size required by the 2T pixel driver circuit given a reference
mobility of the TFT, and the graph having a mark “ 4 repre-
sents the pixel size required by the 5T pixel driver circuit
given a reference mobility of the TFT. In FIG. 1, “u,,” denotes
a reference mobility whose value is in the range 0.1 to 1
cm*/Vs.

For instance, the area of the pixel for the 2-T pixel driver
(FIG. 6A) has the area of the switching transistors, the area of
the drive transistor, and the area occupied by interconnects,
bias lines, etc. In FIG. 1, the drive current and frame rate are
kept constantat 10 pA and 50 Hz, respectively, for a 230x230
array. It is clear that there is no significant savings in area
between the 2-T and 5-T pixel drivers but the savings are
considerable with increasing mobility. This stems mainly
from the reduction in the area of the drive transistor where
there is a trade-off between p, and TFT aspect ratio, W/L
(Width/Length).

In terms of threshold voltage (V ;) uniformity and stability,
both poly-Si and a-Si:H share the same concerns, although in
comparison, the latter provides far better spatial uniformity
but not stability (AV ;). Thus the inter-pixel variation in the
drive current can be a concern in both cases, although clever
circuit design techniques can be employed to compensate for
AV hence improving drive current uniformity. In terms of
long-term reliability, it is not clear with poly-Si technology.
Although there are already products based on a-Si:H technol-
ogy for displays and imaging, the reliability issues associated
with OLEDs may yet be different.

The fabrication processes associated with technology are
standard and adapted from mainstream integrated circuit (IC)
technology, but with capital equipment costs that are much
lower. One ofthe main advantages of the a-Si:H technology 1s
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that it has become a low cost and well-established technology,
while poly-Si has yet to reach the stage of manufacturability.
The technology also holds great promise for futuristic appli-
cations since deposition of a-Si:H, a-SiN_:H, and TFT arrays
can be achieved at low temperatures (=120° C.) thus making
it amenable to plastic substrates, which is a critical require-
ment for mechanically flexible displays.

To minimize the conduction induced in all TFTs in the
pixel by the back electrode, an alternate TFT structure based
on a dual-gate structure is employed as shown in FIG. 7A. In
the dual gate TFT (e.g. FIG. 3), a top gate electrode is added
to the TFT structure to prevent the OLED electrodes from
biasing the a-Si:H channel area (FIG. 2). The voltage on the
top gate can be chosen such so as to minimize the charge
induced in the (parasitic) top channel of the TFT. The objec-
tive underlying the choice of the voltage on the top gate is to
minimize parasitic capacitance in the driver circuits and leak-
age currents in the TFTs so as to enhance circuit performance.
In what follows, the operation of the dual-gate TFT is
described.

FIG. 3 illustrates the structure of a dual-gate TFT fabri-
cated for this purpose, wherein reference numerals S and D
denote a source and a drain, respectively. The fabrication
steps are the same as of that of a normal inverted staggered
TFT structure except that it requires a sixth mask for pattern-
ing the top gate. The length of the TFT may be around 30 pm
to provide enough spacing between the source and drain for
the top gate. The width may be made large (e.g. 1600 pm) by
interconnecting four TFTs with W=400 um (with four of
these TFTs) in parallel to create a sizeable leakage current for
measurement. A delay time is inserted in the measurement of
the current to ensure that the measurement has passed the
transient period created by defects in the a-Si:H active layer,
which give rise to a time-dependent capacitance.

FIG. 4 shows results of static current measurements for
four cases: first when the top gate is tied to -10V, second
when the top gate is grounded, third when the top gate is
floating, and lastly when the top gate is shorted to the bottom
gate. In F1G. 4,V represents the bias voltage applied to the
top gate of the TF'T, and V,,,, represents the voltage applied to
the bottom gate of the TFT.

With a floating top gate, the characteristics are almost
similar to that of a normal single gate TFT. The leakage
current is relatively high particularly when the top gate is
biased with a negative voltage. The lowest values of leakage
current are obtained when the top gate is pegged to either 0V
or to the voltage of the bottom gate. In particular, with the
latter the performance of the TFT in the (forward) sub-thresh-
old regime of operation is significantly improved. This
enhancement in sub-threshold performance can be explained
by the forced shift of the effective conduction path away from
the bottom interface to the bulk a-Si:H region due to the
positive bias on the top gate. This in turn decreases the effect
of the trap states at the bottom interface on the sub-threshold
slope of the TFT.

It is noted that although the addition of another metal
contact as the top gate reduces the leakage current of the TFT,
it may potentially degrade pixel circuit performance by pos-
sible parasitic capacitances introduced by vertically stacking
the OLED pixel. Thus the choice of top gate connection
becomes important. For example, if the top gates in the pixel
circuit are connected to the bottom gates of the associated
TFTs, this gives rise to parasitic capacitances located
between the gates and the cathode, which can lead to unde-
sirable display operation (due to the charging up of the para-
sitic capacitance) when the gate driver drives the TFT switch
as illustrated in FIG. 5. On the other hand, if the top gates are
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grounded, this results in the parasitic capacitance being
grounded to yield reliable and stable circuit operation.

The OLED driver circuits considered here are the voltage-
programmed 2-T driver of FIG. 6A, and the current-pro-
grammed AV -compensated 5-T version of FIG. 7A. The 5-T
driver circuitis a significant variation of the previous designs,
leading to reduced pixel area, reduced leakage, lower supply
voltage, higher linearity (~30 dB), and larger dynamic range
(~40 dB).

Before discussing the operation of the 5-T pixel driver
circuit, the operation of the conventional voltage-driven 2-T
pixel driver circuit will be described. FIG. 6A shows a 2-T
pixel circuit including the 2-T pixel driver circuit, an OLED
and a capacitor C,. The 2-T pixel driver includes two TFTs T,
and T,. FIG. 6B shows input-output timing chart of the 2-T
pixel circuit of FIG. 6A. I, -1, represents the current passing
through the OLED element and transistor T..

Referring to FIGS. 6A and 6B, when the address line is
activated by V..., the voltage on the data line (V ;) starts
charging capacitor C, and the gate capacitance of the driver
transistor T,. Depending on the voltage on the data line, the
capacitor charges up to turn the driver transistor T, on, which
then starts conducting to drive the OLED with the appropriate
level of current. When the address line is turned off, T, is
turned off. However, the voltage at the gate of T, remains
since the leakage current of T, is trivial in comparison. Hence,
the current through the OLED remains unchanged after the
turn off process. The OLED current changes only the next
time around when a different voltage is written into the pixel.

FIG. 7A illustrates a 5-T pixel circuit having the 5-T pixel
current driver circuit for an OLED display, an OLED, and a
capacitor C. The 5-T pixel current driver circuit has five TFTs
T,-Ts. Unlike the 2-T pixel driver circuit of FIG. 6A, the data
that is written into the 5-T pixel in this case is a current (I ;,, ).

FIG. 7B shows input-output timing diagrams of the 5-T
pixel circuit of FIG. 7A. Referring to FIGS. 7A and 7B, the
address line voltage V ;... and the data line current I ,,,, are
activated or deactivated simultaneously. When V... 1s
activated, it forces T, and T, to turn on. T, immediately starts
conducting but T, does not since T5 and T, are off. Therefore,
the voltages at the drain and source of T, become equal. The
current flow through T, starts charging the gate capacitor of
transistors T and T, like the 2-T driver. The current of these
transistors starts increasing and consequently T, starts to con-
duct current. Therefore, T,’s share of I ,,,, reduces and T,’s
share of [, ,_ increases. This process continues until the gate
capacitors of T; and T charge (via T, ) to a voltage that forces
the current of T, to be 1, . At this time, the current of T, is
zero and the entire 1, goes through T, and T;. At the same
time, T drives a current through the OLED, which is ideally
equal to I, *(Ws/W,). (Ws/W,) signifies a current gain
where W represents channel width of Ts, and W represents
channel width of T,. Nowif1,, andV . aredeactivated,
T, will turn off, but due to the presence of capacitances in T,
and T, the current of these two devices cannot be changed
easily, since the capacitances keep the bias voltages constant.
This forces T, to conduct the same current as that of T, to
enable the driver Ts to drive the same current into the OLED
even when the write period is over. Writing a new value into
the pixel then changes the current driven into the OLED.

The result of transient simulation for the 5-T current driver
circuit of FIG. 7A is shown in FIG. 8. As can be seen, the
circuit has a write time of <70 pis, which is acceptable for most
applications. The 5-T current driver circuit does not increase
the required pixel size significantly (FIG. 1), since the sizes of
T,, T5, and T, are scaled down. This also provides an internal
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gain (W/W,=8), which reduces the required input current to
<2 uA for 10 pA OLED current.

The transfer characteristics for the 2-T and 5-T driver cir-
cuits of FIGS. 6A and 7A are illustrated in FIGS. 9 and 10,
respectively, generated using reliable physically-based TFT
models for both forward and reverse regimes. A much
improved linearity (~30 dB) in the transfer characteristics
(Lyaralorep) 18 observed for the 5-T driver circuit due to the
geometrically-defined internal pixel gain as compared to
similar designs. In addition, there are two components
(OLED and T.) in the high current path, which in turn
decreases the required supply voltage and hence improves the
dynamic range. According to FIG. 10, a good dynamic range
(~40 dB) is observed for supply voltage of 20V and drive
currents in the range I, z,<10 pA, which is realistic for high
brightness.

FIG. 11 illustrates variation in the OLED current with the
shift in threshold voltage for the 2-T and 5-T driver circuits of
FIGS. 6A and 7A.

In FIG. 11, the graph having a mark “W” represents the
OLED current when using the 2-T pixel driver circuit, and the
graph having a mark “4” represents the OLED current when
using the 5-T pixel driver circuit.

The 5-T current driver circuit compensates for the shift in
threshold voltage particularly when the shift is smaller than
10% of the supply voltage. This is because the 5-T current
driver circuit is current-programmed. In contrast, the OLED
current in the 2-T driver circuit changes significantly with a
shift in threshold voltage. The 5-T current driver circuit
described here operates at much lower supply voltages, has a
much larger drive current, and occupies less area.

The pixel architectures are compatible to surface (top)
emissive AMOLED displays that enable high on-pixel TFT
integration density for uniformity in OLED drive current and
high apertureratio. The 5-T driver circuit of FIG. 7A provides
on-pixel gain, high linearity (~30 dB), and high dynamic
range (~40 dB) at low supply voltages (15-20V) compared to
the similar designs (27V). The results described here illus-
trate the feasibility of using a-Si:H for 3-inch mobile mono-
chrome display applications on both glass and plastic sub-
strates. With the latter, although the mobility of the TFT is
lower, the size of the drive transistor can be scaled up yet
meeting the requirements on pixel area as depicted in FIG. 1.

As described above, the TFT may be, but not limited to, a
polysilicon-based TFT. Polysilicon has higher electron and
hole mobilities than amorphous silicon. The hole mobilities
are large enough to allow the fabrication of p-channel TFTs.

The advantage of having p-channel TFTs is that bottom
emissive OLEDs can be used along with a p-channel drive
TFT to make a good current source. One such circuit is shown
in FIG. 12. FIG. 12 illustrates a pixel circuit having a conven-
tional 2-T polysilicon based pixel current driver circuit. The
2-T polysilicon based pixel current driver circuit has a
p-channe] drive TFT. In FIG. 12, T, and T, are p-channel
TFTs.

In FIG. 12, the source of the p-type drive TFT is connected
0 V1, Therefore, Vgs, gate-to-source voltage, and hence
the drive current of the p-type TFT is independent of OLED
characteristics. In other words, the driver shown in FIG. 12
performs as a good current source. Hence, bottom emissive
OLED:s are suitable for use with p-channel drive TFTs, and
top emissive OLEDs are suitable for use with n-channel
TFTs.

The trade-off with using polysilicon is that the process of
making polysilicon TFTs requires much higher temperatures
than that of amorphous silicon. This high temperature-pro-
cessing requirement greatly increases the cost, and is not
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amenable to plastic substrates. Moreover, polysilicon tech-
nology is not as mature and widely available as amorphous
silicon. In contrast, amorphous silicon is a well-established
technology currently used in liquid crystal displays (LCDs).
Tt is due to these reasons that amorphous silicon combined
with top emissive OLED based circuit designs is most prom-
ising for AMOLED displays.

Compared to polysilicon TFTs, amorphous silicon TFTs
are n-type and thus are more suitable for top emission circuits
as shown in FIG. 2. and doesn’t preclude their use in full
colour bottom emission circuits either. However, amorphous
silicon TFTs have inherent stability problems due to the mate-
rial structure. In amorphous silicon circuit design, the biggest
hurdle is the increase in threshold voltage V,,, after prolonged
gate bias. This shift is particularly evident in the drive TFT of
an OLED display pixel. This drive TFT is always in the ‘ON’
state, in which there is a positive voltage at its gate. As a result,
its V,,, increases and the drive current decreases based on the
current-voltage equation below:

Ids=(uC , JW/2L)(¥ ;- V) (in Saturation region)

where Ids represents drain to source current; | represents
mobility; C__ represents gate capacitance; W represents chan-
nel width; L represents channel length; V. represents gate to
source voltage; and V,, represents threshold voltage.

In the display, this would mean that the brightness of the
OLED would decrease over time, which is unacceptable.
Hence, the 2-T driver circuits as described above are not
practical for OLED displays, as they do not compensate for
any increasein V.

By contrast, the current mirror based pixel current driver
circuit illustrated in FIG. 7A automatically compensates for
shifts in the V,, of the drive TFT in a pixel.

FIGS. 13-17 illustrate pixel circuits having pixel current
driver circuits in accordance with further embodiments of the
present invention. Each of the pixel circuits shown in FIGS.
13-16 includes a 4-T pixel current driver circuit, an OLED
and a capacitor C,. The pixel circuit shown in FIG. 17
includes a pixel current driver circuit, OLEDs, and capacitors
C,. While the pixel current driver circuits of FIGS. 13-16 are
presented fora monochrome OLED display, the pixel current
driver circuits of FIGS. 13-16 are, however, applicable to a
full color display. The pixel current driver circuit of FIG. 17 1s
provided for a full colour, OLED display.

The pixel driver circuits of FIGS. 13-17 are current mirror
based pixel driver circuits. All these circuits illustrated in
FIGS. 13-17 have mechanisms that automatically compen-
sate for the V,, shift of a drive TFT.

The pixel current driver circuit of FIG. 13 is a modification
of the 5-T pixel driver circuit of FIG. 7A. The 4-T pixel
current driver circuit of FIG. 13 has four TFTs, T,-T,. The
4-T pixel current driver circuit of FIG. 13 compensates for the
shift of V,, of T,. The 4-T pixel current driver circuit of FIG.
13 occupies a smaller area than that of the 5-T pixel current
driver circuit, and provides a higher dynamic range. The
higher dynamic range allows for a larger signal swing at the
input, which means that the OLED brightness can be adjusted
over a larger range.

The 4-T pixel current driver circuit of FIG. 14 has four
TFTs, T,-T,, and has a lower discharge time. The 4-T pixel
current driver circuit of FIG. 14 compensates for the shift of
V,, of T,. The advantage of this circuit is that the discharge
time of the capacitor C, is substantially reduced. This is
because the discharge path has two TFTs (as compared to
three TFTs in the circuit of FIG. 13). The charging time
remains the same. The other advantage is that there is an
additional gain provided by this circuit because T; and T, do
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not have the same source voltages. However, this gain is
non-linear and may not be desirable in some cases.

The 4-T pixel current driver circuit of FIG. 15 has four
TFTs, T,-T,. The 4-T pixel current driver circuit of FIG. 15
compensates for the shift of V, of T,. This circuit does not
have the non-linear gain present in the pixel driver circuit of
FIG. 14, since the source terminals of T, and T, are at the
same voltage. It still maintains the lower capacitance dis-
charge time, along with the other features of the circuit of
FIG. 9.

The 4-T pixel current driver circuit of FIG. 16 has four
TFTs, T,-T,. The 4-T pixel current driver circuit of FIG. 16
compensates for the shift of V, of T,. This circuit forms the
building block for the 3-colour RGB circuit shown in FIG. 17.
Italsohas a low capacitance discharge time and high dynamic
range.

The full colour circuit shown in FIG. 17 minimizes the area
required by an RGB pixel on a display, while maintaining the
desirable features like threshold voltage shift compensation,
in-pixel current gain, low capacitance discharge time, and
high dynamic range. InF1G. 17,V ..V, ... V zos TEDrEseNt
control signals for programming the blue, green, and red
pixels, respectively. The pixel current driver circuit of F1IG. 17
compensates for the shift of V,, of T¢.

The circuits described above may be fabricated using nor-
mal inverted staggered TFT structures. The length and width
of the thin film transistors may change depending on the
maximum drive current required by the circuit and the fabri-
cation technology used.

The pixel current driver circuits of FIGS. 7 and 13-17 use
n-type amorphous silicon TFTs. With the above structure on
the a-Si:H current driver according to the embodiments of the
present invention, the charge induced in the top channel of the
TFT is minimized, and the leakage currents in the TFT is
minimized so as to enhance circuit performance.

However, polysilicon technology may be applied to the
pixel current driver circuits using p-type or n-type TFTs.
These circuits, when made in polysilicon, can compensate for
the spatial non-uniformity of the threshold voltage. The
p-type circuits are conjugates of the above-mentioned circuits
and are suitable for the bottom emissive pixels.

In FIGS. 6A, 7A, and 12-17, the TFT having dual gates is
shown, where the dual gate includes a top gate and a bottom
gate. The top gate may be grounded (for example, in FIGS.
6A, 7A and 12-17), or electrically tied to a bottom gate (FIG.
18).

The dual-gate TFTs are used in the above-mentioned cir-
cuits to enable vertical integration of the OLED layers with
minimum parasitic effects. However, the above-mentioned
circuits compensate for the V,,, shift when the circuits com-
prise single-gate TFTs.

FIGS. 19-24 illustrate pixel current driver circuits having
single-gate TFTs. FIGS. 19-24 correspond to FIGS. 7A and
13-17, respectively.

For example, the pixel current driver circuit of FIG. 19
contains single-gate TFTs having a switch TFT T, a feed-
back TFT T, a reference TFT T, a diode-use TFT T,, and a
drive TFT T,. The pixel current driver circuit of FIG. 20
contains single-gate TFTs having a switch TFT T, a feed-
back TFT T,, a reference TFT T, and a drive TFT T,. The
pixel current driver circuit of FIG. 22 contains single-gate
TFTshaving a feedback TFT T, a switch TFT T, a reference
TFTT,,and adrive TFT T,. The pixel current driver circuit of
FIG. 24 contains single-gate TFTs having switch TFTs T,, T;,
T,, Ts, a feedback TFT T,, and drive TFT T, T, Ts.

The driving scheme and operation of the pixel driver cir-
cuits of FIGS. 19-24 are same as those of FIGS. TA and 13-17.
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The major difference between the pixel current driver circuit
having dual-gate TFTs and the pixel current driver circuit
having single-gate TFTs is that the pixel current driver circuit
having the dual-gate TFTs utilize a better TFT design which
minimizes the leakage currents in the TFTs, thus enhancing
circuit performance. However, the single-gate TFTs are the
standard and preferred design in industry.

InFIGS.19-24, n-type TFT's are shown. However, the pixel
current driver circuits having single-gate TFTs may include
p-type TFTs. Pixel driver circuits with p-type TFTs are shown
in FIG. 25-30, where the circuits for FIGS. 25-30 are analo-
gous to those of FIG. 19-24, respectively.

With regard to the current driver circuits of FIGS. 19-30 the
OLED:s can be either non-inverted or inverted. The four pos-
sible cases are presented in Table 1.

TABLE 1

Posgsible OLED connections.

Bottom Emission Top Emission

OLED Reduced aperture ratio Large aperture ratio

connected at Regular OLED - Regular OLED -

source of transparent anode transparent cathode.

drive TFT OLED current depends on ~ OLED current depends
OLED voltage which on OLED voltage which
changes with aging - changes with aging -
undesirable location undesirable location
Safeguards against Safeguards against small
small variation in drive variation in drive
current by source current by source
degeneration degeneration

OLED Reduced aperture ratio Large aperture ratio

connected at inverted OLED - Inverted OLED -

drain of drive  transparent cathode transparent anode

TFT OLED current independent  OLED current
of OLED voltage Independent of OLED

voltage

The present invention has been described with regard to
one or more embodiments. However, it will be apparent to
persons skilled in the art that a number of variations and
modifications can be made without departing from the scope
of the invention as defined in the claims.

What is claimed is:

1. A control circuit coupled to a supply voltage, comprising
a load and a first transistor coupled in series to said supply
voltage, said first transistor having a gate and the load having
adiode configuration and being connected to a terminal of the
first transistor other than the gate,

a second transistor directly connected to said gate of said
first transistor for connecting a bias line to the said gate,
and

a third transistor directly connected to a node between said
load and said first transistor, wherein during a program-
ming operation the second transistor and the third tran-
sistor are on, the third transistor controlling the voltage
at said node so that the load is off during the program-
ming operation, and wherein during a driving operation
the second and third transistors are off.

2. The control circuit of claim 1 which includes a second
load and a fourth transistor coupled in series to said supply
voltage, said fourth transistor having a gate coupled to said
second transistor.

3. The control circuit of claim 1, wherein the load is a
diode-connected transistor.

4. The control circuitofclaim 1, further comprising a driver
connected to a light emitting device, and wherein during the
driving operation the driver is turned on to cause the light
emitting device to emit light.
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5. The control circuit of claim 4, wherein the driver is a
fourth transistor and a gate of the fourth transistor is con-
nected between the first and second transistors.

6. The control circuit of ¢laim 1, wherein during the pro-
gramming operation, a voltage at a drain terminal and a
source terminal of the third transistor becomes equal.

7. The control circuit of claim 1, wherein a gate of the third
transistor is connected to a first line and a terminal of the
second transistor other than a gate of the second transistor is
connected to a second line different from the first line.

8. The control circuit of claim 7, wherein during the driving
operation, a current conducted by the driver is substantially
the same as that of the first transistor after the second and third
transistors are turned off.
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